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Abstract

Credit Assignment (CA) — the ability to assign value to the reward-generating aspects of an environment or action —
is essential for adaptive decision-making but becomes challenging in complex, multi-step environments. Previous re-
search has found that younger adults can flexibly switch between Model-Free (MF) and Model-Based (MB) strategies
to solve the credit assignment problem. In contrast, older adults are less likely to exhibit such flexibility, potentially
relying more on MF learning due to task representation difficulties. This pilot study explored age-related differences in
CA by adapting a dual-bandit task designed to assess MF and MB contributions and their interactions with behavior.
An initial sample of six younger (19-25 years) and six older adults (67-73 years) completed a sequential decision-making
task involving binary choices between bandits (or pairs) and inferring a hidden option based on observed outcomes. We
could assess the contributions of the MF and MB systems by designing two scenarios based on how the chosen bandit
and its counterpart were repeated in successive trials. Preliminary results revealed evident MF contributions in both
younger and older adults. However, our conclusion of MB contributions was obscured due to the entanglement of the
MF learning. Additionally, we found older adults exhibited slower response times and significant learning across blocks,
suggesting greater cognitive effort than younger adults. This study provides initial evidence for potential age-related
shifts in CA mechanisms, with significant implications for future research. The need for further work integrating neu-
roimaging and computational modeling to disentangle MF and MB contributions underlying CA in aging is underscored
by our findings.
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1 Background

A key feature of human intelligence is the ability to learn which actions are most rewarding in environments with differ-
ent levels of complexity. Identifying which action(s) led to positive or negative outcomes and assigning value to those
actions based on their outcome is a process known as credit assignment (CA) (Moran et al., 2019; Sutton, 1984). Although
straightforward in simple environments, credit assignment becomes harder in complex multi-step scenarios like cooking,
navigating an operating system, or when actions and outcomes are separated in time.

Within the dual reinforcement learning perspective, two distinct systems have been used to describe human decision-
making behavior in these types of complex environments: Model-Free (MF) and Model-Based (MB) decision-making (Daw
et al., 2011; Gershman et al., 2014). During MB decision-making, the agent builds an internal model of the environment
and updates action values accordingly, making it adaptable when the environment changes (Daw et al., 2005; Glascher
et al., 2010). This flexibility allows the agent to think ahead (plan) about the future consequences of potential actions.
Conversely, a MF decision-making strategy relies solely on trial-and-error choices, making the agent more likely to repeat
previously rewarded actions (Daw et al., 2005; Dolan & Dayan, 2013). Previous work examining decision-making across
the lifespan reveals that while younger adults flexibly arbitrate between MF and MB strategies, adapting to the demands
of the environment, older adults rely predominantly on MF learning (Bolenz et al., 2019; Eppinger et al., 2013). This shift
towards simpler strategies has been attributed to older adults’ difficulty representing the task environment (Himmerer
et al., 2019; Ruel et al., 2023).

While previous studies have shown that younger adults employ Model-Based (MB) retrospective inference to resolve
uncertainty, which subsequently guides Model-Free (MF) credit assignment in a sequential decision-making task (Moran
etal., 2019), the interaction between these systems in aging adults remains poorly understood. This study aims to address
this gap by focusing on the credit assignment abilities of older adults and further disentangling the distinct contributions
of Model-Free credit assignment (MFCA) and Model-Based credit assignment (MBCA) mechanisms in older and younger
adults. The study’s unique focus on this interaction could contribute to a deeper understanding of cognitive aging.

2 Method

Based on previous work by Moran and colleagues (2019), 12 pilot
participants (six younger and six older adults) completed a modified
restless dual-bandit task designed to discriminate between MBCA
and MFCA. After learning the deterministic transition structure of
the task (Figure 1A) with 100% accuracy, participants completed
seven decision-making blocks containing 336 standard trials and 168
uncertain trials (Figure 1B). Each of the four bandit images in the tran-
sition structure (top row of Figure 1A) has two distinct counterpart
bandit images, each sharing a different joint outcome image (bottom
row of Figure 1A). For example, the bandit image ‘bird’ is paired
with ‘tree,” sharing the joint outcome image ‘nest,” and its counter-
part ‘female,” sharing a different joint outcome image, ‘airplane.’
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two outcome images associated with their choice successively, the
unique outcome image specific to the chosen bandit first, followed by

the joint outcome image shared by both bandit images (see Figure 1B).

The progression of standard trials created two distinct scenarios:
1) the same bandit image chosen in the previous trial and one of
its counterpart bandits, which shares a joint outcome image, were
displayed in the current trial; 2) a different bandit image, sharing
the joint outcome image with the previously chosen bandit, and its
counterpart bandit were displayed in the current trial. These scenar-
ios enable the separate evaluation of model-free (MF) and model-
based (MB) contributions. Specifically, the main effect of the joint
outcome image—whether it was rewarded or not—served as an in-
dicator of the involvement of the two systems (see Results in Figure
3).

Figure 1: Task Design and Structure. A. The seman-
tic deterministic transition structure. During the ini-
tial learning phase, participants learned the transitions
between bandit images (four top-row images) and the
four outcome images (bottom-row images). The rela-
tionship between the bandit and outcome images was
rooted in semantics associations, where the bandit im-
ages (e.g., bird) were intuitively linked to their corre-
sponding outcome images (e.g., nest or plane) to help
participants learn the transition structure of the task.
B. Standard and uncertain trials. C. Reward probabili-
ties of four outcome images. The reward probability for
each outcome image drifted according to an indepen-
dent Gaussian random walk across trials.



In uncertainty trials, participants selected between pairs of bandit images, with the specific bandit image chosen ran-
domly among the pair (the ‘glitch’). Contrary to the standard trials, participants first saw the joint outcome image to the
selected bandit image pair, followed by the outcome image unique to the chosen bandit image through the ‘glitch.” The
present analyses focused exclusively on standard trials, which is irrelevant to the MB retrospective inference on MFCA
from the uncertainty trials. Notably, regardless of the trial type, the reward probabilities for the outcome images drifted
independently across trials according to Gaussian random walks with reflecting bounds (Figure 1C).

3 Results

Both younger adults’ and older adults” accuracies were significantly above chance (Figure 2A; younger adults: 0.75£0.05
(Mean + SEM), one-sample t-test, t(5) = 4.65, p = 0.006; older adults: 0.73 & 0.06, ¢(5) = 3.64, p = 0.015). There
was no significant difference in accuracy across age groups (independent t-test: ¢(10) = 0.26, p = 0.80), but younger
adults exhibited significantly faster RTs compared to older adults (Figure 2C; younger adults: 0.81s £ 0.07s, older adults:
1.24s,40.05s; independent t-test: ¢(10) = —4.89, p < 0.001). Furthermore, older adults” accuracy improved significantly
from the first to the final block (paired-sample t-test: ¢(5) = —3.42, p = 0.019), suggesting a learning effect (Figure 2B).
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Figure 2: Accuracy and RTs in Younger and Older
Adults. A. Overall accuracy comparison. Boxplots il-
lustrate the overall accuracy and its distribution in both
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To evaluate MF contributions, we examined participants’ likelihood of repeating a choice on the current trial (trial n)
(Prob(Repeat)) based on whether the outcome obtained from the joint outcome image was rewarded or not on the last trial
(trial n-1). A purely MF agent would be more likely to repeat a choice when the joint outcome image was rewarded than
when it was not. In contrast, a purely MB agent would not show this differentiation, as the effects were counterbalanced
across the two counterpart bandit images sharing the same joint outcome image (see Methods for details). Consistent
with Moran et al. (2019), as shown in Figure 3A, we observed that Prob(Repeat) was significantly higher for rewarded
joint outcomes (J-Rew) than for non-rewarded outcomes (J-Non) in both younger and older adults (younger: b = 1.10,
z = 2.87, p = 0.004; older: b = 1.07, z = 2.63, p = 0.009), suggesting a contribution from the MF system. We also found
a main effect for the unique outcome (U-Rew vs. U-Non), which is predicted by both MF and MB systems (younger:
b=2.17,t(474) = 4.01, p < 0.001; older: b = 1.97, t(496) = 3.07, p = 0.002).

To quantify MB contributions, we asked whether participants generalized outcome knowledge in trials where one of the
bandit images in the current trial shared a joint outcome image with the bandit chosen in the previous trial (“generaliza-
tion”). A higher choice probability of the generalization bandit (Prob(Generalize)), given that the joint outcome from the
last trial was rewarded, would indicate an MBCA contribution. This reflects the successful propagation of reward to a
bandit not presented in the last trial, based on the transition structure. As shown in Figure 3B, MB contributions were
evident in younger adults (paired-sample t-test, younger: ¢(5) = —3.23, p = 0.023) and marginally so in older adults
(older: ¢(5) = —2.15, p = 0.085). However, the group difference was not statistically significant (independent t-test:
t(10) = —1.25, p = 0.24). Due to the auto-correlation of the reward probability, the observed generalization effect may
also reflect MF contributions. To disentangle this, we conducted a GLMM to predict choice generalization in the current
trial based on the joint outcome (rewarded or not) in the last trial (Rew), its reward probability (Prob), and their interac-
tion (Int). A significant main effect of the joint outcome (Rew) would indicate a purely MB contribution. In contrast, a
significant effect of reward probability (Prob) would suggest contributions from either MF or MB systems. Our findings
(Figure 3C) showed significant effects of reward probability (beta coefficient for outcome reward probability, younger:
b=4.05, z = 3.53, p < 0.001; older: b = 6.42, z = 2.43, p = 0.016) and a non-significant effect of joint outcome, indicating
the MF system might entirely drive the generalization effect.
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Figure 3: MF and MB contributions to behavior. A. MF contribution. Standard trials featuring the same chosen bandit image
as in the last trial were selected to quantify the MF contribution with a higher likelihood of repeating the same choice if it was
previously rewarded (J-Rew) in comparison to non-rewarded (J-Non) in the last trial, indicating a higher contribution of MF. B. MB
contribution. Standard trials sharing the joint outcome image with the bandit chosen in the last trial (‘generalization’) were selected
to quantify MB contributions. This is indicated by a higher probability of selecting the generalization bandit if the shared joint
outcome image was rewarded. C. Dissociation MF and MB contribution in the generalization choice. A positive coefficient for the
joint outcome (Rew) would indicate a MB contribution. Error bars represent SEM. For A and B, dots denote individual participants.

4 Discussion

In this pilot study, we adapted a dual-bandit task to dissociate MF and MB contributions during CA. The above-chance
overall accuracy observed in both younger and older adults indicates that both groups successfully integrated the task
transition structure with the dynamically changing reward probabilities to inform their decisions. Notably, older adults
showed slower response times and significant learning across experimental blocks, suggesting greater cognitive effort
than younger adults, consistent with previous findings (Bolenz et al., 2019; Eppinger et al., 2013; Himmerer et al., 2019).
In line with Moran et al. (2019), our preliminary results revealed significant MF contributions, evident in the increased
likelihood of repeating a choice when the joint outcome image was rewarded, in both younger and older adults’ choices.
Although we observed a significant increase in generalization probability in younger adults and a marginal increase
in older adults, it remains unclear whether the MB system was involved. This ambiguity arises from the correlation
between reward probability and MF learning. As the GLMM analysis indicates, the exclusively significant effect of
reward probability suggests that the MF system may have entirely driven participants’” CA behavior. It is important to
note that a small sample size somewhat limits our current conclusions. Overall, this pilot study provides initial evidence
of age-related differences in CA and supports the feasibility of the current framework for further investigations. Future
research will incorporate computational models to disentangle the contributions of the MF and MB systems and their
potential dynamical interaction.
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