Credit Where It's Due: Highlights
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Behavioral Results

e Task Feasibility: Participants performed well above chance.

Background

Younger adults flexibly integrate model-free (MF) and model-based (MB) strategies

to assign credit and guide decisions - even in situations with uncertainty (Moran et ... B Younger: N = 26 (Ages 19-35)
al., 2019). 2 oo}’

» Older adults tend to rely more heavily on model-free learning (Ruel et al., 2023). ) 4 8 Older: N=31 (Ages 65-75)
However, it remains unclear whether and how they engage MF, MB, or intermediate o5 = = = - - T - Gesnd e

strategies when faced with uncertainty.

e In Standard » Standard trial sequences (@—M), both groups engage in model-

e This study investigated how the use and interaction of these learning strategies

shift with aging. free (MFCA), and model-based credit assignment (MBCA). However, younger

adults rely less on MFCA and more on MBCA compared to older adults.

MFCA: Probability of Repeat MBCA: Probability of Generalization

Experimental Design

» Transition Structure: One bandit leads to two fixed outcomes
» Reward Probabilities: Drifted as independent Gaussian random walks
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Model Specification

» Three Strategies for Credit Assignment: Model Comparison & Prediction
1. MF credit assignment (MFCA): assign reward to chosen bandit only
2. MBCA: full task structure is used to generalize reward to

related bandits (chosen and unchosen)

« Hybrid models best captured participants' behavior in both age groups.
Older adults exhibited a reduced learning rate when they engaged in

3. Retrospective MB inference MF learning: resolve uncertainty using partial retrospective MB inference-guided MF learning. In contrast, their MB
task structure and update bandit value in a MF way learning rate didn't differ significantly from that of younger adults.
Decision between bird and tree in trial n 1. Model-free Credit Assignment (MFCA): Local 3. Retrospective MB inference guided MF L Model Comparison Parameter Comparison in Hybrid MFMB Outcome Model
_ learning (structure partially involved)
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Model Framework: £ 2
e Pure MF: Value udpate for chosen (standard) and inferred/ N ~ BestModel Distribution per Age Group Data vs. Model Prediction
rejected bandit (uncertainty) - ’ .
» Pure MB: Value update for bandit based on the structure E . poc
« Hybrid models: ) 5 . e
. 2 2 0 :
- Standard: MF + MB mxiture 2 | 2 . -
- Uncertainty: mixture between retrospective MB inference =y o = MFRemforceme'nt - <
guided MF learning and MB @p—-‘t'.l
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